织梦CMS - 轻松建站从此开始!

欧博ABG官网-欧博官方网址-会员登入

欧博Genotropin, Humatrope (somatropin) dosing, indic

时间:2025-12-01 15:17来源: 作者:admin 点击: 6 次
Medscape - Growth hormone dosing for Genotropin, Humatrope (somatropin), frequency-based adverse effects, comprehensive interactions, contraindication

All Interactions Sort By:

 

activity indicator

 

Contraindicated (0)Serious (1)

macimorelin

somatropin, macimorelin. unspecified interaction mechanism. Avoid or Use Alternate Drug. Drugs that may blunt the growth hormone (GH) response to macrimorelin may impact the accuracy of the diagnostic test. Discontinue GH products at least 1 week before administering macimorelin.

Monitor Closely (108)

acarbose

somatropin decreases effects of acarbose by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

albiglutide

somatropin decreases effects of albiglutide by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

alfentanil

somatropin will decrease the level or effect of alfentanil by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

alogliptin

somatropin decreases effects of alogliptin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

alosetron

somatropin will decrease the level or effect of alosetron by affecting hepatic enzyme CYP1A2 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

bendamustine

somatropin will decrease the level or effect of bendamustine by affecting hepatic enzyme CYP1A2 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

betamethasone

betamethasone decreases effects of somatropin by pharmacodynamic antagonism. Use Caution/Monitor. Supraphysiologic glucocorticoid treatment may attenuate growth-promoting effects of growth hormone (GH). Microsomal enzyme 11-beta-hydroxysteroid dehydrogenase type 1 (11-beta-HSD-1) is required for conversion of cortisone to its active metabolite, cortisol, in hepatic and adipose tissue. GH inhibits 11-beta-HSD-1. Consequently, individuals with untreated GH deficiency have relative increases in 11-beta-HSD-1 and serum cortisol. Initiation of GH analogs may result in inhibition of 11-beta-HSD-1 and reduced serum cortisol concentrations.

bexagliflozin

somatropin decreases effects of bexagliflozin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

canagliflozin

somatropin decreases effects of canagliflozin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

carbamazepine

somatropin will decrease the level or effect of carbamazepine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

chlorpropamide

somatropin decreases effects of chlorpropamide by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

clomipramine

somatropin will decrease the level or effect of clomipramine by affecting hepatic enzyme CYP1A2 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

clonidine

somatropin will decrease the level or effect of clonidine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

clozapine

somatropin will decrease the level or effect of clozapine by affecting hepatic enzyme CYP1A2 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

colchicine

somatropin decreases effects of colchicine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates.

corticotropin

corticotropin decreases effects of somatropin by pharmacodynamic antagonism. Use Caution/Monitor. Supraphysiologic glucocorticoid treatment may attenuate growth-promoting effects of growth hormone (GH). Microsomal enzyme 11-beta-hydroxysteroid dehydrogenase type 1 (11-beta-HSD-1) is required for conversion of cortisone to its active metabolite, cortisol, in hepatic and adipose tissue. GH inhibits 11-beta-HSD-1. Consequently, individuals with untreated GH deficiency have relative increases in 11-beta-HSD-1 and serum cortisol. Initiation of GH analogs may result in inhibition of 11-beta-HSD-1 and reduced serum cortisol concentrations.

cortisone

cortisone decreases effects of somatropin by pharmacodynamic antagonism. Use Caution/Monitor. Supraphysiologic glucocorticoid treatment may attenuate growth-promoting effects of growth hormone (GH). Microsomal enzyme 11-beta-hydroxysteroid dehydrogenase type 1 (11-beta-HSD-1) is required for conversion of cortisone to its active metabolite, cortisol, in hepatic and adipose tissue. GH inhibits 11-beta-HSD-1. Consequently, individuals with untreated GH deficiency have relative increases in 11-beta-HSD-1 and serum cortisol. Initiation of GH analogs may result in inhibition of 11-beta-HSD-1 and reduced serum cortisol concentrations.

cyclosporine

somatropin decreases effects of cyclosporine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates.

dapagliflozin

somatropin decreases effects of dapagliflozin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

deflazacort

deflazacort decreases effects of somatropin by pharmacodynamic antagonism. Use Caution/Monitor. Supraphysiologic glucocorticoid treatment may attenuate growth-promoting effects of growth hormone (GH). Microsomal enzyme 11-beta-hydroxysteroid dehydrogenase type 1 (11-beta-HSD-1) is required for conversion of cortisone to its active metabolite, cortisol, in hepatic and adipose tissue. GH inhibits 11-beta-HSD-1. Consequently, individuals with untreated GH deficiency have relative increases in 11-beta-HSD-1 and serum cortisol. Initiation of GH analogs may result in inhibition of 11-beta-HSD-1 and reduced serum cortisol concentrations.

dexamethasone

dexamethasone decreases effects of somatropin by pharmacodynamic antagonism. Use Caution/Monitor. Supraphysiologic glucocorticoid treatment may attenuate growth-promoting effects of growth hormone (GH). Microsomal enzyme 11-beta-hydroxysteroid dehydrogenase type 1 (11-beta-HSD-1) is required for conversion of cortisone to its active metabolite, cortisol, in hepatic and adipose tissue. GH inhibits 11-beta-HSD-1. Consequently, individuals with untreated GH deficiency have relative increases in 11-beta-HSD-1 and serum cortisol. Initiation of GH analogs may result in inhibition of 11-beta-HSD-1 and reduced serum cortisol concentrations.

dienogest/estradiol valerate

dienogest/estradiol valerate will decrease the level or effect of somatropin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Oral estrogens may reduce serum insulin-like growth factor I (IGF-1) response to growth hormone (GH) analogs. Higher GH dose may be required

dihydroergotamine

somatropin decreases effects of dihydroergotamine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates.

disopyramide

somatropin decreases effects of disopyramide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates.

divalproex sodium

somatropin will decrease the level or effect of divalproex sodium by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

drospirenone

drospirenone will decrease the level or effect of somatropin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Oral estrogens may reduce serum insulin-like growth factor I (IGF-1) response to growth hormone (GH) analogs. Higher GH dose may be required

dulaglutide

somatropin decreases effects of dulaglutide by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

duloxetine

somatropin will decrease the level or effect of duloxetine by affecting hepatic enzyme CYP1A2 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

empagliflozin

somatropin decreases effects of empagliflozin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

ergotamine

somatropin decreases effects of ergotamine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates.

ertugliflozin

somatropin decreases effects of ertugliflozin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

ethinylestradiol

ethinylestradiol will decrease the level or effect of somatropin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Oral estrogens may reduce serum insulin-like growth factor I (IGF-1) response to growth hormone (GH) analogs. Higher GH dose may be required

ethosuximide

somatropin decreases effects of ethosuximide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates.

everolimus

somatropin decreases effects of everolimus by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates.

exenatide injectable solution

somatropin decreases effects of exenatide injectable solution by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

exenatide injectable suspension

somatropin decreases effects of exenatide injectable suspension by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

exenatide subdermal implant

somatropin decreases effects of exenatide subdermal implant by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

fentanyl

somatropin will decrease the level or effect of fentanyl by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

fludrocortisone

fludrocortisone decreases effects of somatropin by pharmacodynamic antagonism. Use Caution/Monitor. Supraphysiologic glucocorticoid treatment may attenuate growth-promoting effects of growth hormone (GH). Microsomal enzyme 11-beta-hydroxysteroid dehydrogenase type 1 (11-beta-HSD-1) is required for conversion of cortisone to its active metabolite, cortisol, in hepatic and adipose tissue. GH inhibits 11-beta-HSD-1. Consequently, individuals with untreated GH deficiency have relative increases in 11-beta-HSD-1 and serum cortisol. Initiation of GH analogs may result in inhibition of 11-beta-HSD-1 and reduced serum cortisol concentrations.

fluvoxamine

somatropin will decrease the level or effect of fluvoxamine by affecting hepatic enzyme CYP1A2 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

fosphenytoin

somatropin will decrease the level or effect of fosphenytoin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

glimepiride

somatropin decreases effects of glimepiride by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

glipizide

somatropin decreases effects of glipizide by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

glyburide

somatropin decreases effects of glyburide by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

hydrocortisone

hydrocortisone decreases effects of somatropin by pharmacodynamic antagonism. Use Caution/Monitor. Supraphysiologic glucocorticoid treatment may attenuate growth-promoting effects of growth hormone (GH). Microsomal enzyme 11-beta-hydroxysteroid dehydrogenase type 1 (11-beta-HSD-1) is required for conversion of cortisone to its active metabolite, cortisol, in hepatic and adipose tissue. GH inhibits 11-beta-HSD-1. Consequently, individuals with untreated GH deficiency have relative increases in 11-beta-HSD-1 and serum cortisol. Initiation of GH analogs may result in inhibition of 11-beta-HSD-1 and reduced serum cortisol concentrations.

insulin aspart

somatropin decreases effects of insulin aspart by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

insulin aspart protamine/insulin aspart

somatropin decreases effects of insulin aspart protamine/insulin aspart by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

insulin degludec

somatropin decreases effects of insulin degludec by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

insulin degludec/insulin aspart

somatropin decreases effects of insulin degludec/insulin aspart by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

insulin detemir

somatropin decreases effects of insulin detemir by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

insulin glargine

somatropin decreases effects of insulin glargine by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

insulin glulisine

somatropin decreases effects of insulin glulisine by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

insulin inhaled

somatropin decreases effects of insulin inhaled by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

insulin isophane human/insulin regular human

somatropin decreases effects of insulin isophane human/insulin regular human by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

insulin lispro

somatropin decreases effects of insulin lispro by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

insulin lispro protamine/insulin lispro

somatropin decreases effects of insulin lispro protamine/insulin lispro by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

insulin NPH

somatropin decreases effects of insulin NPH by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

insulin regular human

somatropin decreases effects of insulin regular human by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

isavuconazonium sulfate

somatropin will decrease the level or effect of isavuconazonium sulfate by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

levonorgestrel oral/ethinylestradiol/ferrous bisglycinate

levonorgestrel oral/ethinylestradiol/ferrous bisglycinate will decrease the level or effect of somatropin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Oral estrogens may reduce serum insulin-like growth factor I (IGF-1) response to growth hormone (GH) analogs. Higher GH dose may be required

linagliptin

somatropin decreases effects of linagliptin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

liraglutide

somatropin decreases effects of liraglutide by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

maraviroc

somatropin will decrease the level or effect of maraviroc by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

metformin

somatropin decreases effects of metformin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

methylprednisolone

methylprednisolone decreases effects of somatropin by pharmacodynamic antagonism. Use Caution/Monitor. Supraphysiologic glucocorticoid treatment may attenuate growth-promoting effects of growth hormone (GH). Microsomal enzyme 11-beta-hydroxysteroid dehydrogenase type 1 (11-beta-HSD-1) is required for conversion of cortisone to its active metabolite, cortisol, in hepatic and adipose tissue. GH inhibits 11-beta-HSD-1. Consequently, individuals with untreated GH deficiency have relative increases in 11-beta-HSD-1 and serum cortisol. Initiation of GH analogs may result in inhibition of 11-beta-HSD-1 and reduced serum cortisol concentrations.

mexiletine

somatropin will decrease the level or effect of mexiletine by affecting hepatic enzyme CYP1A2 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

midazolam

somatropin will decrease the level or effect of midazolam by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

miglitol

somatropin decreases effects of miglitol by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

mometasone sinus implant

mometasone sinus implant decreases effects of somatropin by pharmacodynamic antagonism. Use Caution/Monitor. Supraphysiologic glucocorticoid treatment may attenuate growth-promoting effects of growth hormone (GH). Microsomal enzyme 11-beta-hydroxysteroid dehydrogenase type 1 (11-beta-HSD-1) is required for conversion of cortisone to its active metabolite, cortisol, in hepatic and adipose tissue. GH inhibits 11-beta-HSD-1. Consequently, individuals with untreated GH deficiency have relative increases in 11-beta-HSD-1 and serum cortisol. Initiation of GH analogs may result in inhibition of 11-beta-HSD-1 and reduced serum cortisol concentrations.

nateglinide

somatropin decreases effects of nateglinide by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

olanzapine

somatropin will decrease the level or effect of olanzapine by affecting hepatic enzyme CYP1A2 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

pacritinib

somatropin will decrease the level or effect of pacritinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

phenobarbital

somatropin will decrease the level or effect of phenobarbital by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

phenytoin

somatropin will decrease the level or effect of phenytoin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

pimozide

somatropin will decrease the level or effect of pimozide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

pioglitazone

somatropin decreases effects of pioglitazone by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

pirfenidone

somatropin will decrease the level or effect of pirfenidone by affecting hepatic enzyme CYP1A2 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

pomalidomide

somatropin will decrease the level or effect of pomalidomide by affecting hepatic enzyme CYP1A2 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

pramlintide

somatropin decreases effects of pramlintide by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

prednisolone

prednisolone decreases effects of somatropin by pharmacodynamic antagonism. Use Caution/Monitor. Supraphysiologic glucocorticoid treatment may attenuate growth-promoting effects of growth hormone (GH). Microsomal enzyme 11-beta-hydroxysteroid dehydrogenase type 1 (11-beta-HSD-1) is required for conversion of cortisone to its active metabolite, cortisol, in hepatic and adipose tissue. GH inhibits 11-beta-HSD-1. Consequently, individuals with untreated GH deficiency have relative increases in 11-beta-HSD-1 and serum cortisol. Initiation of GH analogs may result in inhibition of 11-beta-HSD-1 and reduced serum cortisol concentrations.

prednisone

prednisone decreases effects of somatropin by pharmacodynamic antagonism. Use Caution/Monitor. Supraphysiologic glucocorticoid treatment may attenuate growth-promoting effects of growth hormone (GH). Microsomal enzyme 11-beta-hydroxysteroid dehydrogenase type 1 (11-beta-HSD-1) is required for conversion of cortisone to its active metabolite, cortisol, in hepatic and adipose tissue. GH inhibits 11-beta-HSD-1. Consequently, individuals with untreated GH deficiency have relative increases in 11-beta-HSD-1 and serum cortisol. Initiation of GH analogs may result in inhibition of 11-beta-HSD-1 and reduced serum cortisol concentrations.

primidone

somatropin will decrease the level or effect of primidone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

quinidine

somatropin will decrease the level or effect of quinidine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

quinine

somatropin will decrease the level or effect of quinine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

ramelteon

somatropin will decrease the level or effect of ramelteon by affecting hepatic enzyme CYP1A2 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

rasagiline

somatropin will decrease the level or effect of rasagiline by affecting hepatic enzyme CYP1A2 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

repaglinide

somatropin decreases effects of repaglinide by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

somatropin will decrease the level or effect of repaglinide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

ropinirole

somatropin will decrease the level or effect of ropinirole by affecting hepatic enzyme CYP1A2 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

rosiglitazone

somatropin decreases effects of rosiglitazone by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

saxagliptin

somatropin decreases effects of saxagliptin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

semaglutide

somatropin decreases effects of semaglutide by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

sirolimus

somatropin will decrease the level or effect of sirolimus by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

sitagliptin

somatropin decreases effects of sitagliptin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

tacrolimus

somatropin will decrease the level or effect of tacrolimus by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

tasimelteon

somatropin will decrease the level or effect of tasimelteon by affecting hepatic enzyme CYP1A2 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

tazemetostat

somatropin will decrease the level or effect of tazemetostat by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

theophylline

somatropin will decrease the level or effect of theophylline by affecting hepatic enzyme CYP1A2 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

somatropin will decrease the level or effect of theophylline by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

thioridazine

somatropin will decrease the level or effect of thioridazine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

tirzepatide

somatropin decreases effects of tirzepatide by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

tizanidine

somatropin will decrease the level or effect of tizanidine by affecting hepatic enzyme CYP1A2 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

tolazamide

somatropin decreases effects of tolazamide by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

tolbutamide

somatropin decreases effects of tolbutamide by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

triamcinolone acetonide extended-release injectable suspension

triamcinolone acetonide extended-release injectable suspension decreases effects of somatropin by pharmacodynamic antagonism. Use Caution/Monitor. Supraphysiologic glucocorticoid treatment may attenuate growth-promoting effects of growth hormone (GH). Microsomal enzyme 11-beta-hydroxysteroid dehydrogenase type 1 (11-beta-HSD-1) is required for conversion of cortisone to its active metabolite, cortisol, in hepatic and adipose tissue. GH inhibits 11-beta-HSD-1. Consequently, individuals with untreated GH deficiency have relative increases in 11-beta-HSD-1 and serum cortisol. Initiation of GH analogs may result in inhibition of 11-beta-HSD-1 and reduced serum cortisol concentrations.

triamcinolone acetonide injectable suspension

triamcinolone acetonide injectable suspension decreases effects of somatropin by pharmacodynamic antagonism. Use Caution/Monitor. Supraphysiologic glucocorticoid treatment may attenuate growth-promoting effects of growth hormone (GH). Microsomal enzyme 11-beta-hydroxysteroid dehydrogenase type 1 (11-beta-HSD-1) is required for conversion of cortisone to its active metabolite, cortisol, in hepatic and adipose tissue. GH inhibits 11-beta-HSD-1. Consequently, individuals with untreated GH deficiency have relative increases in 11-beta-HSD-1 and serum cortisol. Initiation of GH analogs may result in inhibition of 11-beta-HSD-1 and reduced serum cortisol concentrations.

triazolam

somatropin will decrease the level or effect of triazolam by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

ubrogepant

somatropin will decrease the level or effect of ubrogepant by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Dose adjustment is recommended with concomitant use of ubrogepant and moderate and weak CYP3A4 inducers. (see Dosage Modifications)

valproic acid

somatropin will decrease the level or effect of valproic acid by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

warfarin

somatropin will decrease the level or effect of warfarin by affecting hepatic enzyme CYP2C9/10 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

Minor (1)

budesonide

budesonide decreases effects of somatropin by pharmacodynamic antagonism. Minor/Significance Unknown.

acarbose

Monitor Closely (1)somatropin decreases effects of acarbose by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

albiglutide

Monitor Closely (1)somatropin decreases effects of albiglutide by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

alfentanil

Monitor Closely (1)somatropin will decrease the level or effect of alfentanil by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

alogliptin

Monitor Closely (1)somatropin decreases effects of alogliptin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

alosetron

Monitor Closely (1)somatropin will decrease the level or effect of alosetron by affecting hepatic enzyme CYP1A2 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

bendamustine

Monitor Closely (1)somatropin will decrease the level or effect of bendamustine by affecting hepatic enzyme CYP1A2 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

betamethasone

Monitor Closely (1)betamethasone decreases effects of somatropin by pharmacodynamic antagonism. Use Caution/Monitor. Supraphysiologic glucocorticoid treatment may attenuate growth-promoting effects of growth hormone (GH). Microsomal enzyme 11-beta-hydroxysteroid dehydrogenase type 1 (11-beta-HSD-1) is required for conversion of cortisone to its active metabolite, cortisol, in hepatic and adipose tissue. GH inhibits 11-beta-HSD-1. Consequently, individuals with untreated GH deficiency have relative increases in 11-beta-HSD-1 and serum cortisol. Initiation of GH analogs may result in inhibition of 11-beta-HSD-1 and reduced serum cortisol concentrations.

bexagliflozin

Monitor Closely (1)somatropin decreases effects of bexagliflozin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

budesonide

Minor (1)budesonide decreases effects of somatropin by pharmacodynamic antagonism. Minor/Significance Unknown.

canagliflozin

Monitor Closely (1)somatropin decreases effects of canagliflozin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

carbamazepine

Monitor Closely (1)somatropin will decrease the level or effect of carbamazepine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

chlorpropamide

Monitor Closely (1)somatropin decreases effects of chlorpropamide by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

clomipramine

Monitor Closely (1)somatropin will decrease the level or effect of clomipramine by affecting hepatic enzyme CYP1A2 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

clonidine

Monitor Closely (1)somatropin will decrease the level or effect of clonidine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

clozapine

Monitor Closely (1)somatropin will decrease the level or effect of clozapine by affecting hepatic enzyme CYP1A2 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

colchicine

Monitor Closely (1)somatropin decreases effects of colchicine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates.

corticotropin

Monitor Closely (1)corticotropin decreases effects of somatropin by pharmacodynamic antagonism. Use Caution/Monitor. Supraphysiologic glucocorticoid treatment may attenuate growth-promoting effects of growth hormone (GH). Microsomal enzyme 11-beta-hydroxysteroid dehydrogenase type 1 (11-beta-HSD-1) is required for conversion of cortisone to its active metabolite, cortisol, in hepatic and adipose tissue. GH inhibits 11-beta-HSD-1. Consequently, individuals with untreated GH deficiency have relative increases in 11-beta-HSD-1 and serum cortisol. Initiation of GH analogs may result in inhibition of 11-beta-HSD-1 and reduced serum cortisol concentrations.

cortisone

Monitor Closely (1)cortisone decreases effects of somatropin by pharmacodynamic antagonism. Use Caution/Monitor. Supraphysiologic glucocorticoid treatment may attenuate growth-promoting effects of growth hormone (GH). Microsomal enzyme 11-beta-hydroxysteroid dehydrogenase type 1 (11-beta-HSD-1) is required for conversion of cortisone to its active metabolite, cortisol, in hepatic and adipose tissue. GH inhibits 11-beta-HSD-1. Consequently, individuals with untreated GH deficiency have relative increases in 11-beta-HSD-1 and serum cortisol. Initiation of GH analogs may result in inhibition of 11-beta-HSD-1 and reduced serum cortisol concentrations.

cyclosporine

Monitor Closely (1)somatropin decreases effects of cyclosporine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates.

dapagliflozin

Monitor Closely (1)somatropin decreases effects of dapagliflozin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

deflazacort

Monitor Closely (1)deflazacort decreases effects of somatropin by pharmacodynamic antagonism. Use Caution/Monitor. Supraphysiologic glucocorticoid treatment may attenuate growth-promoting effects of growth hormone (GH). Microsomal enzyme 11-beta-hydroxysteroid dehydrogenase type 1 (11-beta-HSD-1) is required for conversion of cortisone to its active metabolite, cortisol, in hepatic and adipose tissue. GH inhibits 11-beta-HSD-1. Consequently, individuals with untreated GH deficiency have relative increases in 11-beta-HSD-1 and serum cortisol. Initiation of GH analogs may result in inhibition of 11-beta-HSD-1 and reduced serum cortisol concentrations.

dexamethasone

Monitor Closely (1)dexamethasone decreases effects of somatropin by pharmacodynamic antagonism. Use Caution/Monitor. Supraphysiologic glucocorticoid treatment may attenuate growth-promoting effects of growth hormone (GH). Microsomal enzyme 11-beta-hydroxysteroid dehydrogenase type 1 (11-beta-HSD-1) is required for conversion of cortisone to its active metabolite, cortisol, in hepatic and adipose tissue. GH inhibits 11-beta-HSD-1. Consequently, individuals with untreated GH deficiency have relative increases in 11-beta-HSD-1 and serum cortisol. Initiation of GH analogs may result in inhibition of 11-beta-HSD-1 and reduced serum cortisol concentrations.

dienogest/estradiol valerate

Monitor Closely (1)dienogest/estradiol valerate will decrease the level or effect of somatropin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Oral estrogens may reduce serum insulin-like growth factor I (IGF-1) response to growth hormone (GH) analogs. Higher GH dose may be required

dihydroergotamine

Monitor Closely (1)somatropin decreases effects of dihydroergotamine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates.

disopyramide

Monitor Closely (1)somatropin decreases effects of disopyramide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates.

divalproex sodium

Monitor Closely (1)somatropin will decrease the level or effect of divalproex sodium by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

drospirenone

Monitor Closely (1)drospirenone will decrease the level or effect of somatropin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Oral estrogens may reduce serum insulin-like growth factor I (IGF-1) response to growth hormone (GH) analogs. Higher GH dose may be required

dulaglutide

Monitor Closely (1)somatropin decreases effects of dulaglutide by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

duloxetine

Monitor Closely (1)somatropin will decrease the level or effect of duloxetine by affecting hepatic enzyme CYP1A2 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

empagliflozin

Monitor Closely (1)somatropin decreases effects of empagliflozin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

ergotamine

Monitor Closely (1)somatropin decreases effects of ergotamine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates.

ertugliflozin

Monitor Closely (1)somatropin decreases effects of ertugliflozin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

ethinylestradiol

Monitor Closely (1)ethinylestradiol will decrease the level or effect of somatropin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Oral estrogens may reduce serum insulin-like growth factor I (IGF-1) response to growth hormone (GH) analogs. Higher GH dose may be required

ethosuximide

Monitor Closely (1)somatropin decreases effects of ethosuximide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates.

everolimus

Monitor Closely (1)somatropin decreases effects of everolimus by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates.

exenatide injectable solution

Monitor Closely (1)somatropin decreases effects of exenatide injectable solution by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

exenatide injectable suspension

Monitor Closely (1)somatropin decreases effects of exenatide injectable suspension by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

exenatide subdermal implant

Monitor Closely (1)somatropin decreases effects of exenatide subdermal implant by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

fentanyl

Monitor Closely (1)somatropin will decrease the level or effect of fentanyl by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

fludrocortisone

Monitor Closely (1)fludrocortisone decreases effects of somatropin by pharmacodynamic antagonism. Use Caution/Monitor. Supraphysiologic glucocorticoid treatment may attenuate growth-promoting effects of growth hormone (GH). Microsomal enzyme 11-beta-hydroxysteroid dehydrogenase type 1 (11-beta-HSD-1) is required for conversion of cortisone to its active metabolite, cortisol, in hepatic and adipose tissue. GH inhibits 11-beta-HSD-1. Consequently, individuals with untreated GH deficiency have relative increases in 11-beta-HSD-1 and serum cortisol. Initiation of GH analogs may result in inhibition of 11-beta-HSD-1 and reduced serum cortisol concentrations.

fluvoxamine

Monitor Closely (1)somatropin will decrease the level or effect of fluvoxamine by affecting hepatic enzyme CYP1A2 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

fosphenytoin

Monitor Closely (1)somatropin will decrease the level or effect of fosphenytoin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

glimepiride

Monitor Closely (1)somatropin decreases effects of glimepiride by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

glipizide

Monitor Closely (1)somatropin decreases effects of glipizide by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

glyburide

Monitor Closely (1)somatropin decreases effects of glyburide by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

hydrocortisone

Monitor Closely (1)hydrocortisone decreases effects of somatropin by pharmacodynamic antagonism. Use Caution/Monitor. Supraphysiologic glucocorticoid treatment may attenuate growth-promoting effects of growth hormone (GH). Microsomal enzyme 11-beta-hydroxysteroid dehydrogenase type 1 (11-beta-HSD-1) is required for conversion of cortisone to its active metabolite, cortisol, in hepatic and adipose tissue. GH inhibits 11-beta-HSD-1. Consequently, individuals with untreated GH deficiency have relative increases in 11-beta-HSD-1 and serum cortisol. Initiation of GH analogs may result in inhibition of 11-beta-HSD-1 and reduced serum cortisol concentrations.

insulin aspart

Monitor Closely (1)somatropin decreases effects of insulin aspart by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

insulin aspart protamine/insulin aspart

Monitor Closely (1)somatropin decreases effects of insulin aspart protamine/insulin aspart by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

insulin degludec

Monitor Closely (1)somatropin decreases effects of insulin degludec by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

insulin degludec/insulin aspart

Monitor Closely (1)somatropin decreases effects of insulin degludec/insulin aspart by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

insulin detemir

Monitor Closely (1)somatropin decreases effects of insulin detemir by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

insulin glargine

Monitor Closely (1)somatropin decreases effects of insulin glargine by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

insulin glulisine

Monitor Closely (1)somatropin decreases effects of insulin glulisine by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

insulin inhaled

Monitor Closely (1)somatropin decreases effects of insulin inhaled by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

insulin isophane human/insulin regular human

Monitor Closely (1)somatropin decreases effects of insulin isophane human/insulin regular human by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

insulin lispro

Monitor Closely (1)somatropin decreases effects of insulin lispro by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

insulin lispro protamine/insulin lispro

Monitor Closely (1)somatropin decreases effects of insulin lispro protamine/insulin lispro by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

insulin NPH

Monitor Closely (1)somatropin decreases effects of insulin NPH by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

insulin regular human

Monitor Closely (1)somatropin decreases effects of insulin regular human by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

isavuconazonium sulfate

Monitor Closely (1)somatropin will decrease the level or effect of isavuconazonium sulfate by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

levonorgestrel oral/ethinylestradiol/ferrous bisglycinate

Monitor Closely (1)levonorgestrel oral/ethinylestradiol/ferrous bisglycinate will decrease the level or effect of somatropin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Oral estrogens may reduce serum insulin-like growth factor I (IGF-1) response to growth hormone (GH) analogs. Higher GH dose may be required

linagliptin

Monitor Closely (1)somatropin decreases effects of linagliptin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

liraglutide

Monitor Closely (1)somatropin decreases effects of liraglutide by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

macimorelin

Serious - Use Alternative (1)somatropin, macimorelin. unspecified interaction mechanism. Avoid or Use Alternate Drug. Drugs that may blunt the growth hormone (GH) response to macrimorelin may impact the accuracy of the diagnostic test. Discontinue GH products at least 1 week before administering macimorelin.

maraviroc

Monitor Closely (1)somatropin will decrease the level or effect of maraviroc by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

metformin

Monitor Closely (1)somatropin decreases effects of metformin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

methylprednisolone

Monitor Closely (1)methylprednisolone decreases effects of somatropin by pharmacodynamic antagonism. Use Caution/Monitor. Supraphysiologic glucocorticoid treatment may attenuate growth-promoting effects of growth hormone (GH). Microsomal enzyme 11-beta-hydroxysteroid dehydrogenase type 1 (11-beta-HSD-1) is required for conversion of cortisone to its active metabolite, cortisol, in hepatic and adipose tissue. GH inhibits 11-beta-HSD-1. Consequently, individuals with untreated GH deficiency have relative increases in 11-beta-HSD-1 and serum cortisol. Initiation of GH analogs may result in inhibition of 11-beta-HSD-1 and reduced serum cortisol concentrations.

mexiletine

Monitor Closely (1)somatropin will decrease the level or effect of mexiletine by affecting hepatic enzyme CYP1A2 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

midazolam

Monitor Closely (1)somatropin will decrease the level or effect of midazolam by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

miglitol

Monitor Closely (1)somatropin decreases effects of miglitol by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

mometasone sinus implant

Monitor Closely (1)mometasone sinus implant decreases effects of somatropin by pharmacodynamic antagonism. Use Caution/Monitor. Supraphysiologic glucocorticoid treatment may attenuate growth-promoting effects of growth hormone (GH). Microsomal enzyme 11-beta-hydroxysteroid dehydrogenase type 1 (11-beta-HSD-1) is required for conversion of cortisone to its active metabolite, cortisol, in hepatic and adipose tissue. GH inhibits 11-beta-HSD-1. Consequently, individuals with untreated GH deficiency have relative increases in 11-beta-HSD-1 and serum cortisol. Initiation of GH analogs may result in inhibition of 11-beta-HSD-1 and reduced serum cortisol concentrations.

nateglinide

Monitor Closely (1)somatropin decreases effects of nateglinide by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

olanzapine

Monitor Closely (1)somatropin will decrease the level or effect of olanzapine by affecting hepatic enzyme CYP1A2 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

pacritinib

Monitor Closely (1)somatropin will decrease the level or effect of pacritinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

phenobarbital

Monitor Closely (1)somatropin will decrease the level or effect of phenobarbital by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

phenytoin

Monitor Closely (1)somatropin will decrease the level or effect of phenytoin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

pimozide

Monitor Closely (1)somatropin will decrease the level or effect of pimozide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

pioglitazone

Monitor Closely (1)somatropin decreases effects of pioglitazone by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

pirfenidone

Monitor Closely (1)somatropin will decrease the level or effect of pirfenidone by affecting hepatic enzyme CYP1A2 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

pomalidomide

Monitor Closely (1)somatropin will decrease the level or effect of pomalidomide by affecting hepatic enzyme CYP1A2 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

pramlintide

Monitor Closely (1)somatropin decreases effects of pramlintide by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

prednisolone

Monitor Closely (1)prednisolone decreases effects of somatropin by pharmacodynamic antagonism. Use Caution/Monitor. Supraphysiologic glucocorticoid treatment may attenuate growth-promoting effects of growth hormone (GH). Microsomal enzyme 11-beta-hydroxysteroid dehydrogenase type 1 (11-beta-HSD-1) is required for conversion of cortisone to its active metabolite, cortisol, in hepatic and adipose tissue. GH inhibits 11-beta-HSD-1. Consequently, individuals with untreated GH deficiency have relative increases in 11-beta-HSD-1 and serum cortisol. Initiation of GH analogs may result in inhibition of 11-beta-HSD-1 and reduced serum cortisol concentrations.

prednisone

Monitor Closely (1)prednisone decreases effects of somatropin by pharmacodynamic antagonism. Use Caution/Monitor. Supraphysiologic glucocorticoid treatment may attenuate growth-promoting effects of growth hormone (GH). Microsomal enzyme 11-beta-hydroxysteroid dehydrogenase type 1 (11-beta-HSD-1) is required for conversion of cortisone to its active metabolite, cortisol, in hepatic and adipose tissue. GH inhibits 11-beta-HSD-1. Consequently, individuals with untreated GH deficiency have relative increases in 11-beta-HSD-1 and serum cortisol. Initiation of GH analogs may result in inhibition of 11-beta-HSD-1 and reduced serum cortisol concentrations.

primidone

Monitor Closely (1)somatropin will decrease the level or effect of primidone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

quinidine

Monitor Closely (1)somatropin will decrease the level or effect of quinidine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

quinine

Monitor Closely (1)somatropin will decrease the level or effect of quinine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

ramelteon

Monitor Closely (1)somatropin will decrease the level or effect of ramelteon by affecting hepatic enzyme CYP1A2 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

rasagiline

Monitor Closely (1)somatropin will decrease the level or effect of rasagiline by affecting hepatic enzyme CYP1A2 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

repaglinide

Monitor Closely (2)somatropin will decrease the level or effect of repaglinide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

somatropin decreases effects of repaglinide by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

ropinirole

Monitor Closely (1)somatropin will decrease the level or effect of ropinirole by affecting hepatic enzyme CYP1A2 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

rosiglitazone

Monitor Closely (1)somatropin decreases effects of rosiglitazone by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

saxagliptin

Monitor Closely (1)somatropin decreases effects of saxagliptin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

semaglutide

Monitor Closely (1)somatropin decreases effects of semaglutide by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

sirolimus

Monitor Closely (1)somatropin will decrease the level or effect of sirolimus by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

sitagliptin

Monitor Closely (1)somatropin decreases effects of sitagliptin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

tacrolimus

Monitor Closely (1)somatropin will decrease the level or effect of tacrolimus by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

tasimelteon

Monitor Closely (1)somatropin will decrease the level or effect of tasimelteon by affecting hepatic enzyme CYP1A2 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

tazemetostat

Monitor Closely (1)somatropin will decrease the level or effect of tazemetostat by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

theophylline

Monitor Closely (2)somatropin will decrease the level or effect of theophylline by affecting hepatic enzyme CYP1A2 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

somatropin will decrease the level or effect of theophylline by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

thioridazine

Monitor Closely (1)somatropin will decrease the level or effect of thioridazine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

tirzepatide

Monitor Closely (1)somatropin decreases effects of tirzepatide by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

tizanidine

Monitor Closely (1)somatropin will decrease the level or effect of tizanidine by affecting hepatic enzyme CYP1A2 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

tolazamide

Monitor Closely (1)somatropin decreases effects of tolazamide by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

tolbutamide

Monitor Closely (1)somatropin decreases effects of tolbutamide by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

triamcinolone acetonide extended-release injectable suspension

Monitor Closely (1)triamcinolone acetonide extended-release injectable suspension decreases effects of somatropin by pharmacodynamic antagonism. Use Caution/Monitor. Supraphysiologic glucocorticoid treatment may attenuate growth-promoting effects of growth hormone (GH). Microsomal enzyme 11-beta-hydroxysteroid dehydrogenase type 1 (11-beta-HSD-1) is required for conversion of cortisone to its active metabolite, cortisol, in hepatic and adipose tissue. GH inhibits 11-beta-HSD-1. Consequently, individuals with untreated GH deficiency have relative increases in 11-beta-HSD-1 and serum cortisol. Initiation of GH analogs may result in inhibition of 11-beta-HSD-1 and reduced serum cortisol concentrations.

triamcinolone acetonide injectable suspension

Monitor Closely (1)triamcinolone acetonide injectable suspension decreases effects of somatropin by pharmacodynamic antagonism. Use Caution/Monitor. Supraphysiologic glucocorticoid treatment may attenuate growth-promoting effects of growth hormone (GH). Microsomal enzyme 11-beta-hydroxysteroid dehydrogenase type 1 (11-beta-HSD-1) is required for conversion of cortisone to its active metabolite, cortisol, in hepatic and adipose tissue. GH inhibits 11-beta-HSD-1. Consequently, individuals with untreated GH deficiency have relative increases in 11-beta-HSD-1 and serum cortisol. Initiation of GH analogs may result in inhibition of 11-beta-HSD-1 and reduced serum cortisol concentrations.

triazolam

Monitor Closely (1)somatropin will decrease the level or effect of triazolam by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

ubrogepant

Monitor Closely (1)somatropin will decrease the level or effect of ubrogepant by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Dose adjustment is recommended with concomitant use of ubrogepant and moderate and weak CYP3A4 inducers. (see Dosage Modifications)

valproic acid

Monitor Closely (1)somatropin will decrease the level or effect of valproic acid by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

warfarin

Monitor Closely (1)somatropin will decrease the level or effect of warfarin by affecting hepatic enzyme CYP2C9/10 metabolism. Use Caution/Monitor. Limited published data indicate that growth hormone treatment increases cytochrome P450 (CYP450)-mediated antipyrine clearance. Caution with sensitive CYP substrates

(责任编辑:)
------分隔线----------------------------
发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 验证码:
发布者资料
查看详细资料 发送留言 加为好友 用户等级: 注册时间:2025-12-07 05:12 最后登录:2025-12-07 05:12
栏目列表
推荐内容