织梦CMS - 轻松建站从此开始!

欧博ABG官网-欧博官方网址-会员登入

Mathematics Stack Exchange

时间:2025-11-23 01:57来源: 作者:admin 点击: 13 次
Theorem:$D_n$ is nilpotent iff $n=2^i$ for $i\geq0$. The following is the proof as given here: ($\Rightarrow$) Suppose $D_{2n}$ is nilpotent. Let $p$

Theorem:$D_n$ is nilpotent iff $n=2^i$ for $i\geq0$.

The following is the proof as given here:

($\Rightarrow$) Suppose $D_{2n}$ is nilpotent. Let $p$ be an odd prime dividing $n$. Then $r^{n/p}$ is an element of order $p$ in $D_{2n}$; in particular, $r^{n/p} \neq r^{-n/p}$. Now $|s| = 2$ and $|r^{n/p}| = p$ are relatively prime, so that, $sr^{n/p} = r^{n/p}s$; a contradiction. Thus no odd primes divide $n$, and we have $n = 2^k$.

($\Leftarrow$) We proceed by induction on $k$, where $n = 2^k$.

For the base case, $k = 0$, note that $D_{2 \cdot 2^0} \cong Z_2$ is abelian, hence nilpotent.

For the inductive step, suppose $D_{2 \cdot 2^k}$ is nilpotent. Consider $D_{2 \cdot 2^{k+1}}$; we have $Z(D_{2 \cdot 2^{k+1}}) = \langle r^{2^k} \rangle$, and so, $D_{2 \cdot 2^{k+1}}/Z(D_{2 \cdot 2^{k+1}}) \cong D_{2 \cdot 2^k}$ is nilpotent. Thus, $D_{2 \cdot 2^{k+1}}$ is nilpotent.

Theorem: $D_{2n}$ is solvable for all $n\geq1$.

To prove this, I will use the above fact (see here).

When $n=1$, $D_{2n}\cong \mathbb{Z}_2$ which is nilpotent and thus solvable. When $n>1$, $D_{2n}/\langle r\rangle\cong\mathbb{Z}_2$ and $\langle r\rangle \cong \mathbb{Z}_n$. Both $\mathbb{Z}_n$ and $\mathbb{Z}_2$ are nilpotent and so they are both solvable. As extensions of solvable groups are solvable, $D_{2n}$ is solvable for all $n>0$.

(责任编辑:)
------分隔线----------------------------
发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 验证码:
发布者资料
查看详细资料 发送留言 加为好友 用户等级: 注册时间:2025-11-28 11:11 最后登录:2025-11-28 11:11
栏目列表
推荐内容